
The Singularity CMAQ Container
Contents

Introduction•
Host Dependencies: Requirements for your Host Machine•
Directories, Environment Variables, and the Container•
Script generalities•
CMAQ CCTM Re-Structuring•
CMAQ Pre-Processing•
CMAQ Post-Processing•
CMAQ Utilities•
SMOKE Emissions Modeling System•
Atmospheric Model Evaluation Tool (AMET)•
Interactive Tool Use•
APPENDIX 1: Selected Directory structure on the Container•
APPENDIX 2: Building additional CMAQ CCTM executables•

Back to Web-site Index

Introduction
You will be running a virtualized system ("the container") for this package on your own
server or workstation (the "host machine"). The container has a complete CMAQ working
environment for you to use on that virtualized system (for CMAQ versions 5.3.1 and 5.3.2),
without needing to build anything, and not needing to worry about installation of prerequisite
software (compilers, libraries, etc.) except for singularity itself.
Throughout, CMAQ_${VRSN} means your choice of CMAQ_531 (for CMAQ version 5.3.1)
or CMAQ_532 (for CMAQ-5.3.2)

This package has two components:

A Singularity container cmaq.simg that contains a virtualized Linux OS, the
CMAQ model, its pre-processors and post-processors, the SMOKE emissions model,
as well as various "tool", utility and analysis-&-visualization programs (with all
PATHs and aliases already set up for you on the container); and

♦

A "local" directory singularity-cmaq/ for your host-machine, that contains various
sample scripts for interacting with CMAQ and SMOKE submodels, tools, and other
programs on that container, as well as this documentation.

♦

This singularity container acts as a virtual machine with its own operating system (CentOS-7,
in this case), and with compilers, libraries, and applications installed on it. Because of that
virtualized set-up, all the necessary dependencies are managed within that environment and
you do not have to worry about installing the pre-requisites, building the models, etc.—you
can just use Singularity commands to run the models on that virtual machine, (almost) no
matter what machine and operating system you're using as the host for it.

All modeling components are compiled for the "64-bit medium memory model" (see
https://cjcoats.github.io/ioapi/AVAIL.html#medium) so that runs even on very-large grids are
supported. Only the tools VERDI and Panoply should be problematic in this regard.

Installed in this container are:

CMAQ-git of June 10, 2020 and Nov 22, 2020) (versions 5.3.1 and
5.3.2)

including CCTM,
preprocessors bcon, create_omi, icon, and mcip,
postprocessors appendwrf, block_extract, combine,
sitecmp_dailyo3, bldoverlay, calc_tmetric, hr2day, sitecmp, and
writesite, and

 The Singularity CMAQ Container 1

https://cjcoats.github.io/ioapi/AVAIL.html#medium

utility programs chemmech, create_ebi, inline_phot_preproc,
and jproc;

SMOKE-git of June 10, 2020 (version 4.7)
including run-scripts and programs aggwndw, beld3to2
bluesky2inv, cemscan, cntlmat, elevpoint, extractida,
gcntl4carb, gentpro, geofac, grdmat, grwinven, inlineto2d,
invsplit, layalloc, laypoint, met4moves, metcombine, metscan,
movesmrg, mrgelev, mrggrid, mrgpt, pktreduc, saregroup,
smk2emis, smkinven, smkmerge, smkreport, spcmat, surgtool,
temporal, tmpbeis3, uam2ncf.

AMET version 1.4
model evaluation tool (scripting currently under development...)

verdi version 2.0_beta
visualization tool

pave version 3.0-beta
I/O API / UAM / CAMX data visualization tool, from MCNC and
Carlie J. Coats, Jr., Ph.D.

ncview version 2.1.2
netCDF-file visualization tool, from UCSD

panoply
netCDF, HDF and GRIB Data Viewer tool, from NASA

GrADS version 2.0.2
Grid Analysis and Display System, from GMU

NCAR Graphics and NCO-4.7.5
from the University Corporation for Atmospheric Research (who run
NCAR for NSF)

gnuplot-4.6.2
command-line driven graphing utility

I/O API-3.2 version 2020-04-11 17:51:44Z
M3Tools version 2020-04-18 16:10:51Z
NetCDF-C 4.3.3.1,

and also NetCDF-Fortran 4.2-16, and NetCDF-C++ 4.2-8
gcc-4.8.5 and gfortran-4.8.5

compilers
MPICH-3, MVAPICH-2, and OpenMPI-3

MPI libraries, compilers, and utility programs, for gcc/gfortran
ddd and gdb

GUI and command-line debuggers
nedit-5.7

GUI programming editor, aliased to xx
xxdiff

GUI difference tool, aliased to xd
okular-4.10

Document (PDF/PostScript/MarkDown) viewer, e.g., to view CMAQ
docs in /opt/CMAQ_531/DOCS

findent
Fortran indentation/code-transformation tool

Note that two-way WRF-CMAQ is not supported on this container.

Because the Singularity container itself is an "immutable image", any new data files (etc.) that
you create can not "live" in the container but instead must be in directories that you mount
from your host-machine onto the container as part of the use of singularity to run commands
on the container. The supplied scripts give examples of how this works; more information is
given in a section below.

On this container are directories

/opt/CMAQ_${VRSN}/scripts/
worker-scripts designed to run CMAQ modeling components. These
are invoked by host-machine scripts such as cmaq_cctm.csh or

 Singularity CMAQ Container

Introduction 2

cmaq_icon.csh (below)
/opt/CMAQ_${VRSN}/bin/

optimized executables for the CMAQ modeling components
/opt/CMAQ_${VRSN}/CCTM/scripts/BLD_CCTM_${VRSN}_gcc[dbg]-*/

optimized and debug CMAQ CCTM executables for various MPI
versions.

/opt/SMOKE/scripts/run/
/opt/CMAQ_532/CCTM/scripts/BLD_CCTM_${VRSN}_ISAM_gcc[dbg]-*/

optimized and debug CMAQ CCTM-ISAM executables for various
MPI versions (CMAQ-5.3.2 only)

/opt/CMAQ_532/CCTM/scripts/BLD_CCTM_${VRSN}_DDM_gcc[dbg]-*/
optimized and debug CMAQ CCTM-DDM executables for various
MPI versions (CMAQ-5.3.2 only)

/opt/SMOKE/scripts/run/
worker-scripts to run SMOKE. These are invoked by host-machine
scripts such as smk_point_nctox.csh (below)

/opt/SMOKE/Linux2_x86_64gfort_medium/,
/opt/SMOKE/Linux2_x86_64gfort_mediumdbg/,

optimized and debug SMOKE executables

Accompanying this container and installed on your host-machine will be a directory
singularity_cmaq/ with five subdirectories:

Docs/
with this document singularity_cmaq.html, and with
configuration-files indicating how this singularity container was
configured;

Logs
for log-files;

Scripts/
sample host-scripts to run CMAQ modeling components, SMOKE,
vis programs, or interactive shell tcsh on the container. The
paradigm is that these scripts set up environment variables (etc.) on
the container, then do singularity exec of either vis-program
executables or "worker scripts" that actually run the modeling
programs.
Note that the cmaq_ and smk_ and singularity-term.csh scripts
also contain batch-queue directives, e.g., for queue/batch usage on
the UNC servers longleaf or dogwood, where singularity is only
available on the compute-nodes.

Reference copies of these scripts are available in the list below, for
you to view or download (use browser-command "Save link as..."):

singularity-shell.csh
Log on to the container from the host
command-line (non-batch! ...in your current
terminal-window).

singularity-term.csh
Launch an interactive rxvt terminal from the
container (e.g., from a debug batch-queue)

cmaq_ncview.csh
Run visualization-tool ncview

cmaq_panoply.csh
etc...

cmaq_verdi.csh
copy_cmaq_bld.csh

Copy a CMAQ CCTM build-directory to the
host machine.

copy_cmaq_nml.csh

 Singularity CMAQ Container

Introduction 3

to copy the CMAQ CCTM namelist-files to
a specified directory on the host machine.

cmaq_cctm.csh
cmaq_cctm.mpich.csh
cmaq_cctm.mvapich.csh
cmaq_cctm.openmpi.csh
cmaq_ddm.mpich.csh
cmaq_ddm.mvapich.csh
cmaq_ddm.openmpi.csh
cmaq_isam.openmpi.mpich.csh
cmaq_isam.mvapich.csh
cmaq_isam.csh

Set up environment on the container for a
(multi-day) CMAQ CCTM run (for
"vanilla", DDM3D enabled, or ISAM
enabled, respectively) and then use the
container's run_cctm.csh (etc.)
worker-scripts to execute that run.
Note that there are versions of these scripts
for each of the supported MPI versions.

cmaq_appendwrf.csh
Run CMAQ post-processor appendwrf

cmaq_bcon.csh
etc...

cmaq_bldoverlay.csh
cmaq_block_extract.csh
cmaq_calc_tmetric.csh
cmaq_combine.csh
cmaq_icon.csh
cmaq_mcip.csh
cmaq_writesite.csh
smk_area_nctox.csh

Set up the environment and run a (multi-day)
SMOKE area source run on the container.

smk_bg_nctox.csh
etc...

smk_edgar_HEMI108k.csh
smk_met4moves.nctox.csh
smk_mrgall_nctox.csh
smk_nonroad_nctox.csh
smk_point_nctox.csh
smk_rateperdistance_nctox.csh
smk_rateperhour_nctox.csh
smk_rateperprofile_nctox.csh
smk_ratepervehicle_nctox.csh
[AMET scripts]

For more about Singularity see the Singularity User Guide at
https://sylabs.io/guides/3.5/user-guide/index.html

Back to Contents

Host Dependencies:
Requirements for your Host Machine

Your host machine needs to have Singularity installed on it. Frequently, Linux vendors will
have native Singularity packages available for you to use, so that Singularity installation is
easy and painless (su root; yum install singularity or su root; apt-get install singularity).
If not, the Singularity User Guide gives instructions on how to install it on your own system.

 Singularity CMAQ Container

Host Dependencies: Requirements for your Host Machine 4

https://sylabs.io/guides/3.5/user-guide/index.html
https://sylabs.io/guides/3.5/user-guide/index.html

Note: on the compute clusters at UNC (and possibly other sites), Singularity is configured to
run on the compute nodes only, but not on the login nodes. The
cmaq_cmaq/Scripts-BATCH/ versions of the scripts are intended for this usage, e.g., on the
UNC cluster dogwood. For other such situations, consult your cluster's systems administrator
for instructions on how to run Singularity applications and (for the CCTM) how to select the
appropriate MPI implementation.

CMAQ CCTM NOTE: MPI implementation is the sticky point. Because the different MPI
implementations are not compatible with each other (mpirun from MPICH-3 will not work
with a program built with OpenMPI, for example) your host machine needs to be running the
same MPI implementation as the CCTM executable on this Singularity container. There are
CCTM builds for three different MPI implementations: MPICH-3, MVAPICH-2, and
OPENMPI-3; script-variable MPIVERSION in the cmaq_cctm*.csh script selects which of
these will be used.

In this container, the only MPI application affected by this is the CMAQ CCTM; all of the
other applications in this container are either "serial" or (shared-memory) OpenMP-parallel
(some m3tools and SMOKE programs) and don't need to use mpirun at all.

Back to Contents

Directories, Environment Variables, and the Container
There are three (and a half) parts of this issue:

Where is modeling software installed?♦
What directories are mounted from the container's host (and how do you mount
additional data directories)?

♦

How do you establish environment variables on the container?♦
On the container, modeling software is installed under directory /opt/ (following UNIX
tradition for software that has its own directory-hierarchy) in a fashion generally similar to the
usual CMAQ, SMOKE, and I/O API directory hierarchies but adapted to the specifics of this
container. Here is a selection of relevant parts the top few levels of that installation hierarchy.
Note that all the CMAQ related optimized executables are sym-linked to directories
/opt/CMAQ_${VRSN}/bin/; all the extra analysis tools, etc., are in /opt/bin/ or
/opt/ioapi-3.2/Linux2_x86_64gfort_medium/, which are already in your
PATH on the container; the container's run-CMAQ-component scripts are in
/opt/CMAQ_${VRSN}/scripts/, and data in your host machine data-directory
${HOSTDATA} is generally mounted on your container's /opt/CMAQ_${VRSN}/data/;
the container's SMOKE scripts are in /opt/SMOKE/scripts/run/, and ${HOSTDATA}
is mounted on /opt/SMOKE/data/, as indicated in the APPENDIX.

Selected Host-machine CMAQ Directories and Files:

Singularity mounts various directories from the host-machine; it is in these directories
that you will wish to have the container "do its work". Because the container itself is
"immutable" (i.e., read-only), any outputs you create must be in those directories
mounted from the host-machine.

The assumption in the current "execute a CMAQ model component on the container" scripts
is that a single master data-directory ${HOSTDATA} on the host should be mounted onto
the container's /opt/CMAQ_${VRSN}/data/: that master data-directory will have
sub-directories for all of the input data and for the CCTM output data and logs. The
expected sub-directory structure for the master directory is given below.
Note that this is a unified-and-simplified directory structure used by all of the CMAQ
modeling components. The top level subdirectories of ${HOSTDATA} are grid or case
specific subdirectories named for environment variable ${APPL} (or possibly more than one
of these, e.g., for programs ICON and BCON that are used with nested-grid applications).
For consistency's same among all the scripts, and to avoid "brittleness" (failure to work
correctly from version to version without having to make detailed script-changes), component

 Singularity CMAQ Container

Directories, Environment Variables, and the Container 5

http://www.catb.org/jargon/html/B/brittle.html

names do not have program-version numbers in them—met/mcip for example, instead of
met/mcipv5.0.

 ${APPL}
 ${APPL}/GRIDDESC
 ${APPL}/WRF-CMAQ/
 ${APPL}/WRF-CMAQ/wrf_inputs/
 ${APPL}/cctm/
 ${APPL}/emis/
 ${APPL}/emis/inln_point/
 ${APPL}/emis/inln_point/othpt/
 ${APPL}/emis/inln_point/pt_oilgas/
 ${APPL}/emis/inln_point/ptegu/
 ${APPL}/emis/inln_point/ptagfire/
 ${APPL}/emis/inln_point/ptnonipm/
 ${APPL}/emis/inln_point/ptfire/
 ${APPL}/emis/inln_point/ptfire_othna/
 ${APPL}/emis/inln_point/cmv_c3/
 ${APPL}/emis/inln_point/stack_groups/
 ${APPL}/emis/gridded_area/
 ${APPL}/emis/gridded_area/rwc/
 ${APPL}/emis/gridded_area/gridded/
 ${APPL}/icbc/
 ${APPL}/land/
 ${APPL}/logs/
 ${APPL}/met/
 ${APPL}/met/wrf/
 ${APPL}/met/mcip/
 ${APPL}/POST/

where in fact for multi-part or multi-grid studies (and particularly for program ICON) there
may be several sets of these sub-directories, each having its own distinguishing ${APPL}.

A number of additional directories are automatically mounted by a singularity ... command:

${HOME}, your home directory
${PWD}, the directory from which singularity was invoked
/tmp, and various system directories

You can also use the

 --bind <host-machine-directory>:<container-directory>

(or -B instead of --bind) command-line option for the singularity commands to specify
what additional host-machine directories are mounted on the container, and at what locations.
If the container-directory is not given, then the directory is available on the container with the
same name as on the host. For example,

 --bind /proj

would mount the /proj directive from the host onto the container, also as /proj.

This command-line directive is how we will normally deal with input and output directories
for model-data. For example, if the container is ${CONTAINER}=/work/cmaq.simg, and
the host-directory is
${HOSTDATA}=/work/SCRATCH/CMAQv5.3.1_Benchmark_2Day, the following
command mounts that directory on container-directory /opt/CMAQ_${VRSN}/data before
invoking container-script /opt/CMAQ_${VRSN}/scripts/run_cctm.csh:

 singularity exec \
 --bind ${HOSTDATA}:/opt/CMAQ_${VRSN}/data \
 ${CONTAINER} /opt/CMAQ_${VRSN}/scripts/run_cctm.csh

 Singularity CMAQ Container

Directories, Environment Variables, and the Container 6

Subdirectories of host data-directory ${HOSTDATA} will be seen on the container as
matching subdirectories of the container data-directory /opt/CMAQ_${VRSN}/data. Here in
this example, /work/SCRATCH/CMAQv5.3.1_Benchmark_2Day/2016_12SE1/met/ on
the host corresponds to /opt/CMAQ_${VRSN}/data/2016_12SE1/met/ on the container,
etc. The full subdirectory structure of the data directory is given above.

Note that each --bind command-line option does only one mount-operation; if you wish to
mount multiple directories from the host-machine, you need multiple --binds.
Note also that these mounts do not follow symbolic links, so you can't use ln -s ...to add
sub-directories to them...

To set environment variables in the container, there is a special setenv form that is used in
the host environment before invoking a singularity command—you prefix the desired
environment-variable name with SINGULARITYENV_. For example, the following sequence
in host-script Scripts-CMAQ/cmaq_cctm.csh

 setenv SINGULARITYENV_START_DATE "2016-07-01"
 setenv SINGULARITYENV_START_TIME 0000000
 setenv SINGULARITYENV_RUN_LENGTH 2400000
 setenv SINGULARITYENV_TIME_STEP 100000
 setenv SINGULARITYENV_END_DATE "2016-07-02"
 setenv SINGULARITYENV_APPL 2016_12SE1
 setenv SINGULARITYENV_EMIS 2016ff
 setenv SINGULARITYENV_PROC mpi
 setenv SINGULARITYENV_NPCOL 1
 setenv SINGULARITYENV_NPROW 3
 setenv SINGULARITYENV_CTM_DIAG_LVL 1

will set the following environment variables on the container, where they are used to control
the container script run_cctm.csh (in the above example):

START_DATE
START_TIME
RUN_LENGTH
TIME_STEP
END_DATE
APPL
EMIS
PROC
NPCOL
NPROW
CTM_DIAG_LVL

Back to Contents

Script Generalities
All of the scripts have been modified not only to fit with the environment of the container, but
also for consistency among themselves, for full control via environment variables, to support
correct return of execution status, to support a common set of "verbose" options, and to
support debugging.

Unfortunately, a number of CMAQ pre-processing, post-processing, and utility programs do
not follow the modeling standard of returning the program's exit status using I/O API routine
M3EXIT() to terminate execution, thus making proper process management difficult for
them.

The sample scripts from directory cmaq_cmaq/Scripts/ are of three types:

Scripts that use singularity exec to run on-container executables (e.g., vis programs)
or modeling scripts (found in directory/files /opt/CMAQ_${VRSN}/scripts/*csh for

1.

 Singularity CMAQ Container

Script Generalities 7

CMAQ components or /opt/SMOKE/scripts/run/*csh), after setting up data
directories mounted from your host machine, and after setting up environment
variables used to control those scripts;
Script singularity-shell.csh (for interactive use within your own
terminal-window), and singularity-term.csh (for batch use) that (after setting up
environment and mounted directories), uses the singularity shell command that gives
you a tcsh session on the container from your host-machine command-line, to allow
you to run interactive programs such as ncdump, ncview, m3stat (etc.), VERDI, or
pave that are installed in the container, e.g., for Interactive Tool Use.
singularity-term.csh launches a terminal from the container with a tcsh session for
you, so that it can be used from batch queues.
NOTE that for the UNC servers, singularity is not available from login-node
command-lines; the singularity-term.csh can be launched into a debug-queue, where
it will launch an X-based terminal from the container, to give you that sort of
command-line access there.

2.

Scripts copy_cmaq_bld.csh and copy_cmaq_nml.csh copy respectively either a
CMAQ CCTM build-directory or a CMAQ CCTM namelist-file from the container to
your host machine.

3.

For SMOKE scripts using singularity exec to run SMOKE applications; see the section
below. Note that the standard SMOKE script-structure runs a (potentially large) set of
time-independent SMOKE programs, followed by a sequence of per-day runs of a set of time
stepped SMOKE programs, and can be quite complex :-)

CMAQ-component scripts using singularity exec to run a CMAQ modeling component,
say foo, need to mount a data-directory ${HOSTDATA} on your host machine to the
expected data-directory /opt/CMAQ_${VRSN}/data on the container (using --bind),
and to establish environment variables (of the form SINGULARITYENV_<name>) on the
host that singularity maps into environment variables on the container, as shown below, to
run on-container modeling script run _foo.csh for that modeling component:

 ...
 set HOSTDATA = <path for data directory on your host machine>
 set CONTAINER = <path for CMAQ container on your host machine>
 ...
 setenv SINGULARITYENV_<name> <value>
 ...
 singularity exec \
 --bind ${HOSTDATA}:/opt/CMAQ_531/data \
 ${CONTAINER} /opt/CMAQ_531/scripts/run_foo.csh
 set err_status = ${status}

 if (${err_status} != 0) then
 echo ""
 echo "**"
 echo "** Error for /opt/CMAQ_531/scripts/run_foo.csh **"
 echo "** STATUS=${err_status} **"
 echo "**"
 endif

 exit(${err_status})

Note that the on-container modeling scripts always return the exit status (whether from
M3EXIT() or SEGFAULT, or...) of the program being executed, with an error-message to the
log if the status indicates failure. This status is further passed back to the singularity exec
scripts, which also write appropriate error-messages and return the status to their callers.

Generally, the singularity exec scripts will echo all output to the screen; to capture it in a
log, you will need to re-direct it. For a modeling-component foo, if the package is installed
under your home directory, that might look like

 [cd ${HOME}/cmaq_cmaq/Scripts-CMAQ]
 cmaq_foo.csh >& ../Logs/cmaq_foo.log &

 Singularity CMAQ Container

Script Generalities 8

For every such singularity exec script on your host machine, you will need to customize
the following shell variables:

${HOSTDATA}
path for data-directory on your your host-machine

${CONTAINER}
path name for the CMAQ container on your host-machine

For batch-queue use of the scripts you may also need to customize the batch-queue
parameters.

For the CCTM scripts, you will also need to customize the MPI-version parameter to match
the MPI version on your host system

MPIVERSION
mpich, mvapich, or openmpi,

 setenv SINGULARITYENV_MPIVERSION <value>

If you want verbose script operation, you can control it with environment variable
CTM_DIAG_LVL on the container:

CTM_DIAG_LVL = 0: no extra diagnostics [default]♦
CTM_DIAG_LVL = 1: log the sorted environment, size of executable, and process
limits

♦

CTM_DIAG_LVL = 2: full script echo♦
In order to change values of this environment variable on the container, edit the value in
following line in your singularity exec script:

 setenv SINGULARITYENV_CTM_DIAG_LVL <value>

If you want to mount additional directories on the container, you may use shell-variable
extradirs to put one or more directives -B <directory> that will cause the container
to mount the directories specified. For example, if you want the container to mount
host-directories /proj and /work (as /proj and /work on the container), modify the script like
this:

set extradirs = '-B /proj -B /work'

If you want a debug-run for a modeling component, the scripts are also set up to support
debugging, if requested. You will need to do the following: First, build a debug-executable
for that modeling component (except for the CTM, for which a debug-executable already
exists on the container), and make sure it is in a directory mounted on the container. Then
customize on environment variables ${DEBUG} and ${EXEC}, as follows: In the
singularity exec script, uncomment the two following statements, and fill in the
container-side path to that executable:

 setenv SINGULARITYENV_DEBUG 1
 setenv SINGULARITYENV_EXEC <path to debug-executable>

Note that environment variable SINGULARITYENV_EXEC can also be used to override the
executable for the modeling component that you are running. See Appendix 2 below. The
value SINGULARITYENV_EXEC should be the path on the container to the executable
(after any host-directory mount-operations). Be aware that you will have problems running
executables built on the host-machine because of problems due to shared-library
incompatibilities between your host machine and the container's CentOS-7 virtual OS. If you
do this, you should use the singularity-shell.csh or singularity-term.csh script to use the
container and its compilers and libraries to build the executable on a directory you mount
from your host machine. You may want to look at that component's Makefile to help you

 Singularity CMAQ Container

Script Generalities 9

determine which compile flags, etc., to use.

Back to Contents

CMAQ CCTM Specifics and Restructuring
There are optimized and debug CMAQ executables for each of three MPI implementations:
MPICH-3, OPENMPI-3, and MVAPICH-2. The executables can be found as CCTM_*.exe
in the following CMAQ-container directories:

 /opt/CMAQ_${VRSN}/CCTM/scripts/
 BLD_CCTM_v${VRSN}_gcc-mpich3/
 BLD_CCTM_v${VRSN}_gcc-openmpi/
 BLD_CCTM_v${VRSN}_gcc-mvapich2/
 BLD_CCTM_v${VRSN}_gccdbg-mpich3/
 BLD_CCTM_v${VRSN}_gccdbg-openmpi/
 BLD_CCTM_v${VRSN}_gccdbg-mvapich2/
 BLD_CCTM_v532_DDM_gcc-mpich3/
 BLD_CCTM_v532_DDM_gcc-openmpi/
 BLD_CCTM_v532_DDM_gcc-mvapich2/
 BLD_CCTM_v532_DDM_gccdbg-mpich3/
 BLD_CCTM_v532_DDM_gccdbg-openmpi/
 BLD_CCTM_v532_DDM_gccdbg-mvapich2/
 BLD_CCTM_v532_ISAM_gcc-mpich3/
 BLD_CCTM_v532_ISAM_gcc-openmpi/
 BLD_CCTM_v532_ISAM_gcc-mvapich2/
 BLD_CCTM_v532_ISAM_gccdbg-mpich3/
 BLD_CCTM_v532_ISAM_gccdbg-openmpi/
 BLD_CCTM_v532_ISAM_gccdbg-mvapich2/

respectively. In all cases, they are compiled for "64-bit medium memory model" (see
https://cjcoats.github.io/ioapi/AVAIL.html#medium) so that even runs on very-large grids are
supported.

Note that since these are the only CCTM executables (matching exactly the compilers and
MPI implementations on the container), other compiler-choices (Intel, PGI, ...) are not
supported. The choice of which executable to use (and whether to invoke the debugger on that
executable) is controlled by container-environment variables MPIVERSION and DEBUG.

The attempt has been made to re-structure the CMAQ run-scripts and the CMAQ directories
for use with the container. The reasons for this are two-fold: first, for consistency among the
CMAQ CCTM, its pre-processors, post-processors, and utility programs; secondly, so that
there is a single "generic" CCTM run-script on the container for each CMAQ CCTM version:

cmaq_cctm.csh
for the "vanilla" CMAQ CCTM;

cmaq_ddm.csh
for theDDM3D enabledCMAQ CCTM;

cmaq_isam.csh
for theISAM enabled CMAQ CCTM.

These scripts are controlled by the following list of environment variables (each of which
has a default, indicated in square brackets [LIKE THIS]):

MPIVERSION
mpich, openmpi, or mvapich, to select MPI version compatible
with that of the host-server [mpich]

PROC
processing-mode: mpi or serial [mpi]

DEBUG
if this environment variable is defined: run the model under debug
using ddd, in which case the run is confined to the first day of the

 Singularity CMAQ Container

CMAQ CCTM Specifics and Restructuring 10

https://cjcoats.github.io/ioapi/AVAIL.html#medium

modeling-period.
Note that PROC=mpi debugging has not been tested; frequently the
interaction between mpirun and debugging is flaky. But one may
hope :-)

NMLDIR (optionally)
if this environment variable is defined: use this directory for CCTM
namelist files.

BLDDIR (optionally)
if this environment variable is defined: use this directory as the
CCTM build-directory, to find the executable.
NOTE that the BLDDIR must be consistent with the MPIVERSION,
since the MVAPICH mpirun cannot necessarily run an OPENMPI
executable, etc.

START_DATE
Run starting-date, formatted YYYY-MM-DD [2016-07-01]

END_DATE
Run ending-date, formatted YYYY-MM-DD [2016-07-02]

START_TIME
Run starting-date, formatted HHMMSS [0000000]

RUN_LENGTH
Run duration, formatted H*MMSS [240000

TIME_STEP
Output time step, formatted HHMMSS [10000]

APPL
Application name (e.g. gridname) [2016_12SE1]

EMIS
emissions case [2016ff]

NPCOL
number of processor-columns in the horizontal domain
decomposition [8]

NPROW
number of processor-rows in the horizontal domain decomposition
[4]

CTM_DIAG_LVL
script-diagnostics/logging level:
0: no extra diagnostics
1: environment, file, and directory based diagnostics
2; full scripting-echo

RUNID
any no-whitespace combination of parameters to identify the run
[${VRSN}_gcc_${APPL}]

Optionally, GRIDDESC
path for GRIDDESC file on the container
[${HOSTDATA}/${APPL}/GRIDDESC on your host machine; this
binds to container-file
/opt/CMAQ_${VRSN}/data/${APPL}/GRIDDESC]

Advanced Topics
to customize NAMELIST files, you can use script
copy_cmaq_nml.csh to copy the "vanilla" namelists to a directory
on your host machine given by the script's environment-variable
SINGULARITYENV_NMLDIR, customize the file(s) there, and then
use the SINGULARITYENV_NMLDIR in the cmaq_cctm.csh,
cmaq_ddm.csh, cmaq_isam.csh scripts to tell the CCTM to use
those namelists.

to build and use a custom executable, you can use script
copy_cmaq_bld.csh to copy a build-directory on the container to a
directory on your host machine given by the script's
environment-variable SINGULARITYENV_BLDDIR, do a custom
re-build of the CMAQ CCTM executable there (using the
singularity-shell.csh script to give you access to the container's

 Singularity CMAQ Container

CMAQ CCTM Specifics and Restructuring 11

compilers and libraries), and then use the
SINGULARITYENV_NMLDIR environment variable in the
cmaq_cctm.csh script to use the executable from that directory, or
else use the SINGULARITYENV_EXEC environment variable to
give the path for the executable you want to use (provided it is in a
directory (like ${HOME}) mounted onto the container.

In the run_cctm.csh, run_ddm.csh, and run_isam.csh scripts on the container, additional
CCTM-control environment variables, e.g., GRID_NAME, CONC_SPCS,
CTM_MAXSYNC, CTM_OCEAN_CHEM, etc., are not hard-coded (changeable only by
editing the script), but are established, with their default values, after the pattern

 if (! $?FOO) setenv FOO BAR

which potentially sets the default value of container-environment variable FOO to BAR; i.e., if
FOO exists in the container environment, then use its existing value; else use the default BAR.
Consequently, one can change all the other CCTM control variables in the
cmaq_cctm.csh script, as follows: To put a different value QUX for environment variable
FOO to override these defaults, you need to do a setenv of the following form in the
cmaq_cctm.csh script, prefixing the environment-variable name FOO by
SINGULARITYENV_)

 setenv SINGULARITYENV_FOO QUX

The run_cctm.csh script (etc.)makes potentially multiple single-day CCTM runs, one for
each day from START_DATE through END_DATE, inclusive.

Note that both the container based scripts like run_cctm.csh and the host based scripts like
cmaq_cctm.csh script have been re-structured to capture exit-status (from M3EXIT() or
from other causes of failure, e.g., SEGFAULT) correctly; and in case of such a failure,
run_cctm.csh terminates the current run with a descriptive message immediately if that
status indicates error, rather than to go ahead blindly ahead with more runs after a failure.

Back to Contents

CMAQ Pre-processing
bcon

Host-script cmaq_bcon.csh sets up control variables

FIN_APPL
ICON case, usually the (fine-grid) output-grid name.

CRS_APPL
input CCTM case, usually the (coarse-grid)
CONC-file input-grid name.

BCTYPE
regrid for regridding CMAQ CTM concentration
files; or
profile for using default profile inputs

GRID_NAME
GRIDDESC-name for the output grid

START_DATE
Gregorian-style starting date, formatted
YYYY-MM-DD

START_TIME
Starting-time, formatted HHMMSS

RUN_LENGTH

 Singularity CMAQ Container

CMAQ Pre-processing 12

Run duration, formatted HHMMSS
Optionally, GRIDDESC

path for GRIDDESC file on the container
[/opt/CMAQ_${VRSN}/data/${CRS_APPL}/GRIDDESC]

mounts a data-directory (which should contain subdirectories for both the
input and output grids, and then executes the container-script
/opt/CMAQ_${VRSN}/scripts/run_bcon.csh which runs program ICON
on the container.

create_omi

deferred to a later date...

If you want to do it yourself, look at the script
/opt/CMAQ_${VRSN}/PREP/create_omi/scripts/cmaq_omi_run.csh on
the container, copy it out to a host-machine directory that will be mounted on
the container (${HOME}?), edit it there, using

setenv SINGULARITYENV_...

for the environment variables), and then using

singularity exec /opt/CMAQ_${VRSN}/bin/create_omi

to execute the program.

icon

Host-script cmaq_icon.csh sets up control variables

FIN_APPL
ICON case, usually the (fine-grid) output-grid name.

CRS_APPL
input CCTM case, usually the (coarse-grid)
CONC-file input-grid name.

BCTYPE
regrid for regridding CMAQ CTM concentration
files; or
profile for using default profile inputs

GRID_NAME
GRIDDESC-name for the output grid

START_DATE
Gregorian-style starting date, formatted
YYYY-MM-DD

START_TIME
Starting-time, formatted HHMMSS

RUN_LENGTH
Run duration, formatted HHMMSS

Optionally, GRIDDESC
path for GRIDDESC file on the container
[/opt/CMAQ_${VRSN}/data/${CRS_APPL}/GRIDDESC]

mounts a data-directory (which should contain subdirectories for both the
input and output grids), and then executes the container-script
/opt/CMAQ_${VRSN}/scripts/run_icon.csh which runs program ICON on
the container.

 Singularity CMAQ Container

bcon 13

mcip

Host-script cmaq_mcip.csh sets up the following control variables (using
different conventions than the other CMAQ modeling components):

APPL
run identifier [160702]

CoordName
16-character-max coordinate system name, for
GRIDDESC [LamCon_40N_97W]

GridName
16-character-max grid name, for GRIDDESC
[2016_12SE1]

EXECUTION_ID
80-character-max run-identification string
["mcip.exe $APPL $GridName"]

IfGeo
Use InGeoFile input? [F]

LPV
0: Do not compute and output potential vorticity
1: Compute and output potential vorticity

LWOUT
0: Do not output vertical velocity
1: Output vertical velocity

LUVBOUT
0: Do not output u- and v-component winds on
B-grid
1: Output u- and v-component winds on both B-grid
and C-grid

MCIP_START
UTC starting date&time, formatted
YYYY-MM-DD-HH:MM:SS.SSSS
[2016-07-02-00:00:00.0000]

MCIP_END
UTC final date&time, formatted
YYYY-MM-DD-HH:MM:SS.SSSS
[2016-07-02-00:00:00.0000]

INTVL
Output time step (minutes) [60]

IOFORM
1: Models-3 I/O API
2: WRF-format "raw" netCDF

BTRIM
number of meteorology "boundary" points to remove
on each of four horizontal sides of MCIP domain, or
-1 to use explicit window information X0, Y0,
NCOLS, NROWS, as below.

X0
output-grid starting column, if BTRIM=-1 [13]

Y0
output-grid starting row, if BTRIM=-1 [94]

NCOLS
output-grid column-dimension, if BTRIM=-1 [89]

NROWS
output-grid row-dimension, if BTRIM=-1 [104]

LPRT_COL
column for diagnostic prints on output domain
If LPRT_COL=0 use domain-center column

LPRT_ROW

 Singularity CMAQ Container

mcip 14

row for diagnostic prints on output domain
If LPRT_ROW=0 use domain-center row

WRF_LC_REF_LAT
Lambert conformal reference latitude [40]
If -999.0, MCIP will use average of the two true
latitudes.

for the container, and mounts the data-directory (which should contain
subdirectories for both WRF input data and MCIP output data) on the
container, and then executes the container-script
/opt/CMAQ_${VRSN}/scripts/run_mcip.csh which runs program MCIP
on the container.

Back to Contents

CMAQ Post-Processing
appendwrf

Host-script cmaq_appendwrf.csh sets up the data directory ${HOSTDIR},
optionally the container-subdirectories INDIR and OUTDIR and the
basenames INFILE1, INFILE2, INFILE3 for the three input files and
the one output file for appendwrf, and then executes the container-script
/opt/CMAQ_${VRSN}/scripts/run_appendwrf.csh which runs program
appendwrf on the container.

bldoverlay

Host-script cmaq_bldoverlay.csh sets up environment variables
START_DATE, END_DATE, APPL, HOURS_8HRMAX and optionally
MISS_CHECK, SPECIES, UNITS, mounts the indicated data-directory
${HOSTDIR}, and then executes the container-script
/opt/CMAQ_${VRSN}/scripts/run_bldoverlay.csh which runs program
bldoverlay on the container.

block_extract

Host-script cmaq_block_extract.csh sets up the data directory
${HOSTDIR}, environment variables

APPL
run identifier name (e.g., grid-name) [2016_12SE1]

SPECLIST
Array of species to extract.
ALL is supported also. ["(O3 NO2)"]

TIME_ZONE
Time Zone (GMT or EST [GMT]

OUTFORMAT
Format of input files (SAS or IOAPI) [IOAPI]

LOCOL
starting column for the extraction region [44]

HICOL
ending column for the extraction region [46]

LOROW
starting row for the extraction region [55]

HIROW
ending row for the extraction region [57]

LOLEV
starting lvel for the extraction region [1]

 Singularity CMAQ Container

CMAQ Post-Processing 15

HILEV
ending level for the extraction region [1]

RUNID
Run identifier for the input files
[gcc_${VRSN}_${APPL}]

INFILES
array of basenames for the input files
["(COMBINE_ACONC_${RUNID}_201607.nc)"]
Note that all these files should be in directory
${HOSTDIR}/${APPL}/POST

for the container, and mounts the data-directory on the container, then
executes the container-script
/opt/CMAQ_${VRSN}/scripts/run_block_extract.csh which runs program
block_extract on the container.

calc_tmetric

Host-script cmaq_calc_tmetric.csh sets up the data directory
${HOSTDIR}, environment variables

APPL
run identifier name (e.g., grid-name) [2016_12SE1]

RUNID
Run identifier for the input files
[${VRSN}_gcc_${APPL}]

OPERATION
operation to perform - SUM or AVG [AVG]

SPECIES
Array of species to extract.
ALL is supported also. ["(O3 CO PM25_TOT
)"]

INFILES
array of basenames for the input files
["(COMBINE_ACONC_${RUNID}_201607.nc)"]
Note that all these files should be in directory
${HOSTDIR}/${APPL}/POST

for the container, mounts the data-directory on the container, and then
executes the container-script
/opt/CMAQ_${VRSN}/scripts/run_calc_tmetric.csh which runs program
calc_tmetric on the container.

combine

Host-script cmaq_combine.csh sets up the data directory ${HOSTDIR},
environment variables

MECH
Chemical mechanism name [cb6r3_ae6_aq]

APPL
run identifier name (e.g., grid-name) [2016_12SE1]

RUNID
Run identifier for the input files
[gcc_${VRSN}_${APPL}]

START_DATE
Gregorian-style starting date, formatted
YYYY-MM-DD

END_DATE
Gregorian-style final date, formatted YYYY-MM-DD

 Singularity CMAQ Container

block_extract 16

for the container, mounts the data-directory on the container, and then
executes the container-script
/opt/CMAQ_${VRSN}/scripts/run_combine.csh which runs program
combine on the container, with one execution for (3-D) concentration files
and one execution for (2-D) deposition files for each day from
START_DATE through END_DATE, inclusive.

hr2day

Host-script cmaq_hr2day.csh sets up the data directory ${HOSTDIR},
environment variables

APPL
run identifier name (e.g., grid-name) [2016_12SE1]

RUNID
Run identifier for the input files
[gcc_${VRSN}_${APPL}]

USELOCAL
Use local time? [N]

USEDST
Use daylight savings time? [N]

PARTIAL_DAY
Partial day calculation (computes value for last day)?
[Y]

HROFFSET
constant hour offset between desired time zone and
GMT [0]

START_HOUR
starting hour for daily metrics [0]

END_HOUR
ending hour for daily metrics [23]

HOURS_8HRMAX
Number of 8hr values to use when computing daily
maximum 8hr ozone (17 or 24) [24]

START_DATE
Gregorian-style starting date, formatted
YYYY-MM-DD [2016-07-01]

END_DATE
Gregorian-style final date, formatted YYYY-MM-DD
[2016-07-02]

SPECIES_1
define species&operations
format: comma-list
"Name,Units,From_species,Operation"
operations: {SUM, AVG, MIN, MAX, @MAXT,
MAXDIF, 8HRMAX, SUM06}
["O3,ppbV,O3,8HRMAX"]

INFILES
array of basenames for the input files ["(
COMBINE_ACONC_${RUNID}_201607.nc)"]
Note that all these files should be in directory
${HOSTDIR}/${APPL}/POST

for the container, mounts the data-directory on the container, and then
executes the container-script
/opt/CMAQ_${VRSN}/scripts/run_hr2day.csh which runs program
hr2day on the container.

 Singularity CMAQ Container

combine 17

sitecmp

tbd...
Look at the following scripts on the container and the suggestions for
scripting create_omi, above (or use the singuilarity-shell.csh script to run
/opt/CMAQ_${VRSN}/bin/sitecmp interactively):

 /opt/CMAQ_${VRSN}/POST/sitecmp/scripts/run_sitecmp_AQS_Daily.csh
 /opt/CMAQ_${VRSN}/POST/sitecmp/scripts/run_sitecmp_AQS_Hourly.csh
 /opt/CMAQ_${VRSN}/POST/sitecmp/scripts/run_sitecmp_CSN.csh
 /opt/CMAQ_${VRSN}/POST/sitecmp/scripts/run_sitecmp_IMPROVE.csh
 /opt/CMAQ_${VRSN}/POST/sitecmp/scripts/run_sitecmp_NADP.csh
 /opt/CMAQ_${VRSN}/POST/sitecmp/scripts/run_sitecmp_SEARCH_Hourly.csh

sitecmp_dailyo3

tbd... look at the following scripts on the container:

 /opt/CMAQ_${VRSN}//POST/sitecmp_dailyo3/scripts/run_sitecmp_dailyo3_AQS.csh
 /opt/CMAQ_${VRSN}//POST/sitecmp_dailyo3/scripts/run_sitecmp_dailyo3_CASTNET.csh

writesite

Host-script cmaq_writesite.csh sets up the data directory ${HOSTDIR},
environment variables

APPL
run identifier name (e.g., grid-name) [2016_12SE1]

RUNID
Run identifier for the input files
[gcc_${VRSN}_${APPL}]

START_DATE
Gregorian-style starting date, formatted
YYYY-MM-DD

END_DATE
Gregorian-style ending date, formatted
YYYY-MM-DD

SITE_FILE
Name of input file containing sites to process, or
ALL (i.e., process all cells) [ALL]

USELOCAL
Use local time? [N]

TIME_SHIFT
constant hour offset between desired time zone and
GMT [0]

TIME_SHIFT
Shifts time of data from GMT [0]

USECOLROW
Site file contains column/row values? (else Lat-Lon
values) [N]

LAYER
grid layer to output [1]

PRTHEAD
Output header records? [Y]

PRT_XY
Output map projection coordinates X and Y? [Y]

SPECIES_1
Name of species to process [O3]

IN_FILE

 Singularity CMAQ Container

sitecmp 18

Base-name for input file
[COMBINE_ACONC_${RUNID}_201607.nc]

for the container, mounts the data-directory on the container, and then
executes the container-script
/opt/CMAQ_${VRSN}/scripts/run_writesite.csh which runs program
writesite on the container.

Back to Contents

CMAQ Utilities
chemmech

pending...
Or use the singularity-shell.csh script to run it interactively...

create_ebi

pending...

inline_phot_preproc

pending...

jproc

pending...

Back to Contents

SMOKE Modeling
The SMOKE programs have all been built for both optimized and debug on the container,
using the gfortran/gcc compiler set for "medium" memory model (so that even very large
data sets are supported); the executables can be found in directories
/opt/SMOKE/Linux2_x86_64gfort_medium/ and
opt/SMOKE/Linux2_x86_64gfort_mediumdbg/ (for a more complete listing of directories
on the container, see the APPENDIX.

The SMOKE scripts have all been re-structured to make correct use of program exit-status
(stopping the sequence of execution when there is a failure), and pass that status back through
to the caller. They have also been re-structured so that if debugging is requested by means of
environment variable DEBUGMODE, it will "just work" (using the ddd GUI debugger on the
container) without requiring extensive and deep hacking of multiple scripts to make it work.
In that case, they will only run for the first day of the episode, rather than running the
debugger repeatedly for each separate day of a multi-day run-sequence

There are three relevant sets of SMOKE scripts for use with SMOKE on this container:

On-container ASSIGNS-scripts in container directory /opt/SMOKE/assigns/ have been
modified to set environment variable SMK_HOME correctly for this container, and to look at
environment variable DEBUGMODE and set environment variable BIN appropriately for this
container: either Linux2_x86_64gfort_medium for optimized, or
Linux2_x86_64gfort_mediumdbg for debug.

On-container runscripts smk_run.csh, qa_run.csh, cntl_run.csh in container
directory /opt/SMOKE/scripts/run/ have been re-structured so that if an error occurs
(whether reported by M3EXIT(), or because of SEGFAULT, or ...), they will terminate

 Singularity CMAQ Container

writesite 19

execution the current set of runs immediately and return the exit-status to the invoking script,
rather than blindly going ahead and trying to execute everything that follows, irrespective of
the failure. They also properly support running SMOKE component programs under the ddd
debugger without needing the detailed "script-hacking" needed by their predecessors.
These scripts source the relevant ASSIGNS-script (passed in from the on-host runscripts as
environment variable ASSIGNS_FILE) as needed for their execution.

On-host runscripts such as smk_ratepervehicle_nctox.csh in host-machine directory
cmaq_cmaq/Scripts-SMOKE/ pass the basename of the appropriate ASSIGNS-script in
environment variable ASSIGNS_FILE to the container, and invoke the appropriate sequence
of smk_run.csh and qa_run.csh there, making use of the returned exit-status from these
scripts to further control the run-sequence: it will stop and log an error message for the first
program-run that exits with a failing (non-zero) exit status (or else it will run to completion, if
everything succeeds).

For debugging, in the appropriate on-host run-script, replace the statement

 unsetenv SINGULARITYENV_DEBUGMODE

by

 setenv SINGULARITYENV_DEBUGMODE Y

and set the other environment variables to ensure that only the one requested
modeling-component is run, and that only for the date of interest.

Back to Contents

Atmospheric Model Evaluation Tool (AMET)
AMET Version 1.4 is installed under container-directory /opt/AMET_v14/.

Note that AMET support tools bldoverlay_${VRSN}.exe, combine_${VRSN}.exe,
sitecmp_${VRSN}.exe, and sitecmp_dailyo3_${VRSN}.exe are installed with CMAQ in
container-directorues /opt/CMAQ_${VRSN}/bin.

[TBD...]

Back to Contents

Interactive Tool Use
See the annotated copy of Scripts-CMAQ/singularity-shell.csh at the bottom of this section,
below, which sets up an interactive shell-session on the container for you...

Many of the modeling tasks you wish to do are best done interactively, not from "batch". The

singularity shell ...

command allows you to run an interactive shell (e.g., tcsh) in the container, frequently by
acting on data in a directory mounted from the host-machine, and generating outputs in
a(nother) directory mounted from the host-machine (recalling that attempts to write data into
the container's file-system itself will fail, with a "permission denied" nasty-gram); you may
recall that your ${HOSTDATA}, your ${HOME}, and /tmp/ are examples of such directories
mounted on the container from your host-machine...

Note that PATHs and aliases, etc., have already been set up for you on the container; that
set-up can be found in the container's /etc/profile.d/local.csh.

 Singularity CMAQ Container

SMOKE Modeling 20

Examples of commands you might want to run interactively include the following
applications installed in the container. For the most part, they are installed under /opt/bin/;
they are all on the default path for singularity shell. A few of these tools also have
singularity exec scripts to run them directly on your host machine; these last scripts need to
be customized in the same way that the CMAQ host-machine scripts are.

M3Tools programs version 3.2 2020-04-18 16:10:51Z
such as m3cple, m3diff, m3probe, m3stat, and a variety of others.
These are probably best run interactively after you invoke
singularity-shell.csh (or script them in a directory mounted from
your host machine, using the principles described above, and invoke
the script on the container after doing singularity-shell.csh or
launching singularity-term.csh to a debug-queue).

verdi.sh version 2.0_beta
a gridded Java based netCDF data visualization tool from EPA: see
https://www.cmascenter.org/verdi/
Host script: cmaq_cmaq/Scripts-CMAQ/cmaq_verdi.csh will
directly invoke verdi on the container. Edit this script as indicated
above, to suit your host machine and data directory situation.
verdi may also be run interactively on the container, after you invoke
singularity-shell.csh or launching singularity-term.csh to a
debug-queue

Note that any output from verdi (e.g., any image-files you created, or
output from save project must be in a directory mounted from
your host-machine; you may recall that your ${HOME is one such
directory...

AMET version 1.4
software for the analysis and evaluation of predictions from
meteorological and air quality models. See
https://www.cmascenter.org/amet/
AMET matches the model output for particular locations to the
corresponding observed values from one or more networks of
monitors.

pave version 3.0 beta
a visualization tool for I/O API / UAM / CAMX data, from MCNC
and Carlie J. Coats, Jr., Ph.D.; see
https://cjcoats.github.io/pave/PaveManual.html: this version has been
re-structured to offer vastly improved performance for large data
sets. (It is so much faster that for animations you will probably need
to use environment variable TENTHS_SECS_BETWEEN_FRAMES
to slow down the animations enough that you can interpret them.)
 Built for 64-bit-medium memory model, so that usable data set
sizes are limited only by available memory (unlike the other vis
tools, which tend to have 2GB limits)
Note also that the file-selection GUI fails, due to software versioning
problems ("library rot"); however,

pave [<config>] -f <path to file> ...

does work, where ${config} = 2, 3, 3a, 3b, 3d, 3g, 5, 6, 51, frac,
lu, o3, soil, strm, tk identifies one of the on-container PAVE
configuration-files pave.${config}.config found in container
directory /opt/pave-3.0/Config/
A number of these use "zebra" color palettes: pave.3.config, for
example, uses a 5-hue/50-color palette, where the first ten colors are
blues with varying saturation ranging from near-white to
fully-saturated.
${config} = frac, lu, o3, soil, strm, tk are for the relevant specific
variable, e.g., tk for TK, Temperature (Kelvin).
pave is probably best run interactively after you invoke

 Singularity CMAQ Container

Interactive Tool Use 21

https://cjcoats.github.io/ioapi/AA.html#tools
https://www.cmascenter.org/verdi/
https://www.cmascenter.org/amet/
https://cjcoats.github.io/pave/PaveManual.html
https://cjcoats.github.io/ioapi/AVAIL.html#medium

singularity-shell.csh or launching singularity-term.csh to a
debug-queue

ncview version 2.1.2
a netcdf-file visualization tool from UCSD; see
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
Host script: cmaq_cmaq/Scripts-CMAQ/cmaq_ncview.csh
Edit this script as indicated above, to suit your host machine and data
directory situation, or run ncview interactively after you invoke
singularity-shell.csh or launching singularity-term.csh to a
debug-queue

panoply
a netCDF, HDF and GRIB data viewer tool from NASA: see
https://www.giss.nasa.gov/tools/panoply/
Host script: cmaq_cmaq/Scripts-CMAQ/cmaq_panoply.csh
Edit this script as indicated above, to suit your host machine and data
directory situation, or run panoply interactively after you invoke
singularity-shell.csh or launching singularity-term.csh to a
debug-queue.

GrADS
the Grid Analysis and Display System from GMU: see
http://cola.gmu.edu/grads/
GrADS is probably best run interactively after you invoke
singularity-shell.csh or launching singularity-term.csh to a
debug-queue

NCAR Graphics
see http://ngwww.ucar.edu/
NCAR Graphics is probably best run interactively after you invoke
singularity-shell.csh or launching singularity-term.csh to a
debug-queue

gnuplot
graphics/plotting tool: see http://www.gnuplot.info/
gnuplot is probably best run interactively after you invoke
singularity-shell.csh or launching singularity-term.csh to a
debug-queue

ddd and gdb
debuggers: ddd is a GUI "wrapper" for gdb
These are invoked automatically when requested by the
modeling-component scripts; or you can run them interactively after
you invoke singularity-shell.csh or launching singularity-term.csh
to a debug-queue

nedit
GUI text editor for interactive use, after you invoke
singularity-shell.csh
There is an alias xx that runs it in the background: e.g., to bring up
edit-windows on files foo, bar, and qux, issue the command

xx foo bar qux
okular

PDF/MarkDown viewer, after you invoke singularity-shell.csh,
e.g., for reading CMAQ documents in
/opt/CMAQ_${VRSN}/DOCS.

xxdiff
GUI file-differencing tool for interactive use, after you invoke
singularity-shell.csh
There is an alias xd that runs it in the background with
"ignore-whitespace" command-line options; to see the differences in
files foo and bar, issue the command

xd foo bar
findent

 Singularity CMAQ Container

Interactive Tool Use 22

http://meteora.ucsd.edu/~pierce/ncview_home_page.html
https://www.giss.nasa.gov/tools/panoply/
http://cola.gmu.edu/grads/
http://ngwww.ucar.edu/
http://www.gnuplot.info/

see https://github.com/wvermin/findent
Fortran source indentation and beautification program for both fixed
("f77-style") and free ("f90-style") format; also converts
Fortran fixed format to Fortran free format (and vice-versa). It will
accept CMAQ and SMOKE's non-Standard "fixed-132" source
format.
There is an alias tof90 that converts fixed-format Fortran source to
free format, using the I/O API's indentation conventions, as in the
following:

tof90 < prog.f > prog.f90

cmaq_cmaq/Scripts-CMAQ/singularity-shell.csh is an example of a host-system
script that

sets up some environment variables;♦
mounts host-machine directories on the container as described above; and♦
then runs tcsh on the container, giving you an interactive prompt,♦

for you to use tools (such as those listed above) on the container. The essential content of it is
the following, which establishes various container-environment variables APPL , EMIS,
etc., and then mounts the host directory ${HOSTDATA} on container-directory
/opt/CMAQ_${VRSN}/data, and then invokes an interactive tcsh session on the
container ${CONTAINER}, and starting from directory /opt/CMAQ_${VRSN}/data on
the container:

 #!/bin/csh -f
 #
 # Script to Invoke "singularity shell" for cmaq container
 # Data directory on host: mounts onto container-directory "/opt/CMAQ_${VRSN}/data"

 set HOSTDATA = <path for data directory on your host machine>
 set CONTAINER = <path for CMAQ container on your host machine>

 # Examples of setting up environment variables such as APPL and EMIS
 # for the container:

 setenv SINGULARITYENV_APPL 2016_12SE1
 setenv SINGULARITYENV_EMIS 2016ff

 # invoke "singularity shell" using bindings of host-directories to
 # container-directories, and starting tcsh at mount-point of ${HOSTDATA}

 cd ${HOSTDATA}

 singularity shell -s /usr/bin/tcsh \
 --bind ${HOSTDATA}:/opt/CMAQ_${VRSN}/data \
 ${CONTAINER}

You will then probably want to do something like the following (at the tcsh prompt within
the container):

 verdi.sh

or

 pave -f /opt/CMAQ_${VRSN}/data/${APPL}/met/mcip/METCRO2D_160701.nc \
 -f /opt/CMAQ_${VRSN}/data/${APPL}/cctm/CCTM_ACONC_v531_gcc_2016_12SE1_20160701.nc

or something like the following m3stat run (noting that the report-file created by m3stat
below must be in a host-machine-mounted directory such as $HOME; if it's not a directory
mounted from the host-system, the system will give you a nasty-gram indicating "permission

 Singularity CMAQ Container

Interactive Tool Use 23

https://github.com/wvermin/findent

denied"):

 cd /opt/CMAQ_${VRSN}/data/${APPL}/met/mcip
 ls
 setenv AFILE $cwd/METCRO2D_160701.nc
 setenv REPORT $HOME/METCRO2D_160701.stats
 m3stat AFILE REPORT DEFAULT

Back to Contents

APPENDIX 1: Selected Directory structure on the Container
 /data # extra mount-point, if needed

 /opt/AMET_14/
 /opt/CMAQ_${VRSN}/
 /opt/CMAQ_${VRSN}/bin/ # optimized Linux2_x86_64gfort_medium executables
 appendwrf_v531.exe
 BCON_v531.exe
 bldmake_gcc.exe
 bldoverlay_v531.exe
 block_extract_v531.exe
 calc_tmetric_v531.exe
 CCTM_v531.exe
 combine_v531.exe
 hr2day_v531.exe
 ICON_v531.exe
 mcip.exe
 sitecmp_dailyo3_v531.exe
 sitecmp_v531.exe
 writesite_v531.exe
 /opt/CMAQ_${VRSN}/data/
 /opt/CMAQ_${VRSN}/scripts/ # run_<something>.csh model-component scripts
 run_appendwrf.csh
 run_bcon.csh
 run_bldoverlay.csh
 run_block_extract.csh
 run_calc_tmetric.csh
 run_cctm.csh
 run_combine.csh
 run_hr2day.csh
 run_icon.csh
 run_mcip.csh
 run_writesite.csh
 /opt/CMAQ_${VRSN}/tables/ # time independent ASCII files and tables
 /opt/CMAQ_${VRSN}/CCTM/
 /opt/CMAQ_${VRSN}/CCTM/scripts/ # various bldit, run-cctm, etc. scripts, and CCTM build-directories
 BLD_CCTM_${VRSN}_gcc-mpich3/
 BLD_CCTM_${VRSN}_gcc-mvapich2/
 BLD_CCTM_${VRSN}_gcc-openmpi/
 BLD_CCTM_${VRSN}_gccdbg-mpich3/
 BLD_CCTM_${VRSN}_gccdbg-mvapich2/
 BLD_CCTM_${VRSN}_gccdbg-openmpi/
 BLD_CCTM_${VRSN}_DDM3D_gcc-mpich3/
 BLD_CCTM_${VRSN}_DDM3D_gcc-mvapich2/
 BLD_CCTM_${VRSN}_DDM3D_gcc-openmpi/
 BLD_CCTM_${VRSN}_DDM3D_gccdbg-mpich3/
 BLD_CCTM_${VRSN}_DDM3D_gccdbg-mvapich2/
 BLD_CCTM_${VRSN}_DDM3D_gccdbg-openmpi/
 BLD_CCTM_${VRSN}_ISAM_gcc-mpich3/
 BLD_CCTM_${VRSN}_ISAM_gcc-mvapich2/
 BLD_CCTM_${VRSN}_ISAM_gcc-openmpi/
 BLD_CCTM_${VRSN}_ISAM_gccdbg-mpich3/
 BLD_CCTM_${VRSN}_ISAM_gccdbg-mvapich2/
 BLD_CCTM_${VRSN}_ISAM_gccdbg-openmpi/
 /opt/CMAQ_${VRSN}/CCTM/src/
 /opt/CMAQ_${VRSN}/CCTM/src/MECHS/ # namelists and chemical-mechanism files
 /opt/CMAQ_${VRSN}/DOCS/
 /opt/CMAQ_${VRSN}/POST/
 /opt/CMAQ_${VRSN}/PREP/

 Singularity CMAQ Container

APPENDIX 1: Selected Directory structure on the Container 24

 /opt/CMAQ_${VRSN}/UTIL/

 /opt/SMOKE/
 /opt/SMOKE/assigns/
 ASSIGNS.EDGAR.cmaq.cb05_soa.HEMI_108k
 ASSIGNS.nctox.cmaq.cb05_soa.us12-nc
 /opt/SMOKE/data/
 /opt/SMOKE/scripts/
 /opt/SMOKE/scripts/run/
 cntl_run.csh
 qa_run.csh
 smk_run.csh
 /opt/SMOKE/src/
 /opt/SMOKE/Linux2_x86_64gfort_medium/
 /opt/SMOKE/Linux2_x86_64gfort_mediumdbg/

 /opt/AMET_v14/
 /opt/AMET_v14/R_analysis_code
 /opt/AMET_v14/R_analysis_code/batch_scripts
 /opt/AMET_v14/R_db_code
 /opt/AMET_v14/bin
 /opt/AMET_v14/configure
 /opt/AMET_v14/docs
 /opt/AMET_v14/model_data
 /opt/AMET_v14/model_data/AQ
 /opt/AMET_v14/model_data/MET
 /opt/AMET_v14/model_data/MET/metExample_wrf
 /opt/AMET_v14/obs
 /opt/AMET_v14/obs/AQ
 /opt/AMET_v14/obs/MET
 /opt/AMET_v14/output
 /opt/AMET_v14/scripts_analysis
 /opt/AMET_v14/scripts_db

 /opt/ioapi-3.2/
 /opt/ioapi-3.2/ioapi/
 /opt/ioapi-3.2/m3tools/
 /opt/ioapi-3.2/Linux2_x86_64gfort_medium/
 /opt/ioapi-3.2/Linux2_x86_64gfort_mediumdbg/

 /opt/bin/
 findent
 panoply
 pave
 verdi.sh
 wfindent

Back to Contents

APPENDIX 2: Building additional (e.g., CMAQ CCTM)
executables

As noted above, environment variable SINGULARITYENV_EXEC can also be used to
override the executable for the modeling component that you are running.
NOTE that you will need to build such executables using the compilers and libraries on
the container; otherwise, you will aalmost certainly encounter shared-library problems.
Gee, thanks, Ulrich Drepper! First, you will probably need to copy a source-directory from
the container to an area on the host machine, using the singularity-shell.csh command. It is
recommended that this area be under your home directory, so that host-machine and
singularity-container paths to the executable will be the same. Here is a sample of how you
might do this, assuming you want to build a CMAQ-5.3.2-DDM-mpich3 CCTM executable
under directory :

On the host, do mkdir -p $HOME/mystuff/ (if you don't have that directory already)♦
On the host, do singularity-shell.csh or singularity-term.csh♦

 Singularity CMAQ Container

APPENDIX 2: Building additional (e.g., CMAQ CCTM) executables 25

On the container, do cd /opt/CMAQ_532/CCTM/scripts/ to get to the directory
holding the container's appropriate build-directory

♦

On the container, do cp -r BLD_CCTM_532_DDM3D_gcc-mpich3/
$HOME/mystuff/

♦

On the host, modify the codes in
$HOME/mystuff/BLD_CCTM_532_DDM3D_gcc-mpich3/ as you desire.

♦

On the container, do cd
$HOME/mystuff/BLD_CCTM_532_DDM3D_gcc-mpich3/ then make. This will
build the

♦

In your host's cmaq_ddm.mpich.csh script, add the command

setenv SINGULARITYENV_EXEC
$HOME/mystuff/BLD_CCTM_532_DDM3D_gcc-mpich3/CCTM_v532_DDM3D.exe

♦

Run your new script.♦

Copyright © 2020 Carlie J. Coats, Jr., and University of North Carolina Institute for the Environment

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Send comments to

Carlie J. Coats, Jr.
cjcoats@email.unc.edu

 Singularity CMAQ Container

APPENDIX 2: Building additional (e.g., CMAQ CCTM) executables 26

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
mailto:cjcoats@email.unc.edu
mailto:cjcoats@email.unc.edu

	 Singularity CMAQ Container

